995 resultados para high-fructose syrup


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extracellular exoinulinase from Kluyveromyces marxianus YS-1, which hydrolyzes inulin into fructose, was immobilized on Duolite A568 after partial puriWcation by ethanol precipitation and gel exclusion chromatography on Sephadex G-100. Optimum temperature of immobilized enzyme was 55 °C, which was 5 °C higher than the free enzyme and optimal pH was 5.5. Immobilized biocatalyst retained more than 90% of its original activity after incubation at 60 °C for 3 h, whereas in free form its activity was reduced to 10% under same conditions, showing a signiWcant improvement in the thermal stability of the biocatalyst after immobilization. Apparent Km values for inulin, raYnose and sucrose were found to be 3.75, 28.5 and 30.7 mM, respectively. Activation energy (Ea) of the immobilized biocatalyst was found to be 46.8 kJ/mol. Metal ions like Co2+ and Mn2+ enhanced the activity, whereas Hg2+ and Ag2+ were found to be potent inhibitors even at lower concentrations of 1 mM. Immobilized biocatalyst was eVectively used in batch preparation of high fructose syrup from Asparagus racemosus raw inulin and pure inulin, which
yielded 39.2 and 40.2 g/L of fructose in 4 h; it was 85.5 and 92.6% of total reducing sugars produced, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extracellular exoinulinase( 2, 1- ß- D fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable(100%) for 3 h at the optimum temperature of 50º c. Mn2+ and Ca2+ produced a 2A-fold and 1.2-fold enhancement in enzyme activity, whereas Hg2+ and Ag2+  completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6mg/ml and 41.3mg/ml, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In search of an adequate model for the human metabolic syndrome, the metabolic characteristics of Wistar rats were analysed after being submitted to different protocols of high fructose ingestion. First, two adult rat groups (aged 90 d) were studied: a control group (C1; n 6) received regular rodent chow (Labina, Purina) and a fructose group (F1; n 6) was fed on regular rodent chow. Fructose was administered as a 10 % solution in drinking water. Second, two adult rat groups (aged 90 d) were evaluated: a control group (C2; n 6) was fed on a balanced diet (AIN-93G) and a fructose group (F2; n 6) was fed on a purified 60 % fructose diet. Finally, two young rat groups (aged 28 d) were analysed: a control group (C3; n 6) was fed on the AIN-93G diet and a fructose group (F3; n 6) was fed on a 60 % fructose diet. After 4-8 weeks, the animals were evaluated. Glucose tolerance, peripheral insulin sensitivity, blood lipid profile and body fat were analysed. In the fructose groups F2 and F3 glucose tolerance and insulin sensitivity were lower, while triacylglycerolaemia was higher than the respective controls C2 and C3 (P < 0.05). Blood total cholesterol, HDL and LDL as well as body fat showed change only in the second protocol. In conclusion, high fructose intake is more effective at producing the signs of the metabolic syndrome in adult than in young Wistar rats. Additionally, diet seems to be a more effective way of fructose administration than drinking water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: A high-fructose diet (HFrD) may play a role in the obesity and metabolic disorders epidemic. In rodents, HFrD leads to insulin resistance and ectopic lipid deposition. In healthy humans, a four-week HFrD alters lipid homoeostasis, but does not affect insulin sensitivity or intramyocellular lipids (IMCL). The aim of this study was to investigate whether fructose may induce early molecular changes in skeletal muscle prior to the development of whole-body insulin resistance. METHODS: Muscle biopsies were taken from five healthy men who had participated in a previous four-week HFrD study, during which insulin sensitivity (hyperinsulinaemic euglycaemic clamp), and intrahepatocellular lipids and IMCL were assessed before and after HFrD. The mRNA concentrations of 16 genes involved in lipid and carbohydrate metabolism were quantified before and after HFrD by real-time quantitative PCR. RESULTS: HFrD significantly (P<0.05) increased stearoyl-CoA desaturase-1 (SCD-1) (+50%). Glucose transporter-4 (GLUT-4) decreased by 27% and acetyl-CoA carboxylase-2 decreased by 48%. A trend toward decreased peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was observed (-26%, P=0.06). All other genes showed no significant changes. CONCLUSION: HFrD led to alterations of SCD-1, GLUT-4 and PGC-1alpha, which may be early markers of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/OBJECTIVES High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. SUBJECTS/METHODS We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks.Results:There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. CONCLUSIONS Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé La prédominance de l'obésité qui touche les enfants et les adultes a augmenté dans le monde entier ces dernières décennies. Les différentes études épidémiologiques ont prouvé que l'obésité est devenue une préoccupation profonde de santé aux États-Unis et au Canada. Il a été montré que l'obésité a beaucoup d’effets sur la santé ainsi il serait important de trouver différentes causes pour le gain de poids. Il est clair que l'obésité soit la condition de multiples facteurs et implique des éléments génétiques et environnementaux. Nous nous concentrons sur les facteurs diététiques et particulièrement le fructose où sa consommation a parallèlement augmenté avec l'augmentation du taux d'obésité. La forme principale du fructose est le sirop de maïs à haute teneur en fructose (HFCS) qui est employé en tant qu'édulcorant primordial dans la plupart des boissons et nourritures en Amérique du Nord. Il a été suggéré que la prise du fructose serait probablement un facteur qui contribue à l’augmentation de la prédominance de l'obésité. L'objectif de cette étude était d'évaluer s'il y a un rapport entre la consommation du fructose et le risque d'obésité. Nous avons travaillé sur deux bases de données des nations Cree et Inuit. Nous avons eu un groupe de 522 adultes Cree, (263 femmes et 259 hommes) dans deux groupes d'âge : les personnes entre 20 et 40 ans, et les personnes de 40 à 60 ans. Nous les avons classés par catégorie en quatre groupes d'indice de masse corporelle (IMC). L'outil de collecte de données était un rappel de 24 heures. En revanche, pour la base de données d'Inuit nous avons eu 550 adultes (301 femmes et 249 hommes) dans deux groupes d'âge semblables à ceux du Cree et avec 3 catégories d’indice de masse corporelle. Les données dans la base d'Inuit ont été recueillies au moyen de deux rappels de 24 heures. Nous avons extrait la quantité de fructose par 100 grammes de nourriture consommés par ces deux populations et nous avons créé des données de composition en nourriture pour les deux. Nous avons pu également déterminer les sources principales du fructose pour ces populations. Aucun rapport entre la consommation du fructose et l’augmentation de l’indice de masse corporelle parmi les adultes de Cree et d'Inuit n’a été détecté. Nous avons considéré l’apport énergétique comme facteur confondant potentiel et après ajustement, nous avons constaté que l'indice de masse corporelle a été associé à l’apport énergétique total et non pas à la consommation du fructose. Puisque dans les études qui ont trouvé une association entre la consommation de fructose et l’obésité, le niveau de la consommation de fructose était supérieure à 50 grammes par jour et comme dans cette étude ce niveau était inférieur à cette limite (entre 20.6 et 45.4 g/jour), nous proposons que des effets negatifs du fructose sur la masse corporelle pourraient être testés dans des populations à plus haute consommation. Les essais cliniques randomisés et éventuelles études cohortes avec différents niveaux de consommation de fructose suivis à long terme pourraient aussi être utiles. Mots clés : fructose, sirop de maïs à haute teneur en fructose (HFCS), obésité et poids excessif

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-04

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup, and is now being considered as an intermediate step in the possible route of biomass conversion into fuels and chemicals. Recently, it has been shown that a hydrophobic, large pore, silica molecular sieve having the zeolite beta structure and containing framework Sn4+ (Sn-Beta) is able to isomerize glucose into fructose in aqueous media. Here, I have investigated how this catalyst converts glucose to fructose and show that it is analogous to that achieved with metalloenzymes. Specifically, glucose partitions into the molecular sieve in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center (framework Sn4+), isomerizes into the acyclic form of fructose and finally ring closes to yield the furanose product. Akin to the metalloenzyme, the isomerization step proceeds by intramolecular hydride transfer from C2 to C1. Extraframework tin oxides located within hydrophobic channels of the molecular sieve that exclude liquid water can also isomerize glucose to fructose in aqueous media, but do so through a base-catalyzed proton abstraction mechanism. Extraframework tin oxide particles located at the external surface of the molecular sieve crystals or on amorphous silica supports are not active in aqueous media but are able to perform the isomerization in methanol by a base-catalyzed proton abstraction mechanism. Post-synthetic exchange of Na+ with Sn-Beta alters the glucose reaction pathway from the 1,2 intramolecular hydrogen shift (isomerization) to produce fructose towards the 1,2 intramolecular carbon shift (epimerization) that forms mannose. Na+ remains exchanged onto silanol groups during reaction in methanol solvent, leading to a near complete shift in selectivity towards glucose epimerization to mannose. In contrast, decationation occurs during reaction in aqueous solutions and gradually increases the reaction selectivity to isomerization at the expense of epimerization. Decationation and concomitant changes in selectivity can be eliminated by addition of NaCl to the aqueous reaction solution. Thus, framework tin sites with a proximal silanol group are the active sites for the 1, 2 intramolecular hydride shift in the isomerization of glucose to fructose, while these sites with Na-exchanged silanol group are the active sites for the 1, 2 intramolecular carbon shift in epimerization of glucose to mannose.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied whether PPARβ/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARβ/δ-deficient mice but not in wild-type mice. Feeding PPARβ/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARβ/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARβ/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene NAD(P)H: quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARβ/δ-null mice, suggesting that PPARβ/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARβ/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARβ/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue.